Problem Set 2

Postulates of Quantum Mechanics

- 1. Write down functions (in one dimension) that satisfy the criteria necessary to be valid wavefunctions: single valued, continuous, twice differentiable, and square integrable on the interval $-\infty$ to ∞ .
- 2. Write down functions of x that are eigenfunctions of \hat{O} and their corresponding eigenvalues, where:
 - (a) $\hat{O} = \frac{d}{dx}$
 - (b) $\hat{O} = \frac{d^2}{dr^2}$
- 3. Normalize the following functions on the interval $-\infty$ to ∞ (i.e. solve for N such that $\int_{-\infty}^{\infty} f^*(x) f(x) dx = 1$):
 - (a) $f(x) = N e^{-ax^2}$
 - (b) $f(x) = Nx^2 e^{-ax^2}$
 - (c) $f(x) = \begin{cases} N \sin\left(\frac{\pi x}{L}\right) & \text{if } 0 \le x \le L \\ 0 & \text{otherwise} \end{cases}$ (d) $f(x) = \begin{cases} N \cos\left(\frac{2\pi x}{L}\right) & \text{if } -L/2 \le x \le L/2 \\ 0 & \text{otherwise} \end{cases}$

Here, a and L are constants.

4. Prove that the functions $\sin(x)$ and $\cos(x)$ are orthogonal on the interval $-\pi$ to π .

Some Potentially Useful Equations	
Normalization:	$\int_{-\infty}^{\infty} f^*(x) f(x) \mathrm{d}x = 1$
Orthogonality:	$\int_{-\infty}^{\infty} f^*(x)g(x)\mathrm{d}x = 0$
Eigenvalue problem:	$\hat{O}f(x) = \lambda f(x)$