Problem Set 2

Postulates of Quantum Mechanics

1. Write down functions (in one dimension) that satisfy the criteria necessary to be valid wavefunctions: single valued, continuous, twice differentiable, and square integrable on the interval $-\infty$ to ∞.
2. Write down functions of x that are eigenfunctions of \hat{O} and their corresponding eigenvalues, where:
(a) $\hat{O}=\frac{d}{d x}$
(b) $\hat{O}=\frac{d^{2}}{d x^{2}}$
3. Normalize the following functions on the interval $-\infty$ to ∞ (i.e. solve for N such that $\left.\int_{-\infty}^{\infty} f^{*}(x) f(x) \mathrm{d} x=1\right):$
(a) $f(x)=N \mathrm{e}^{-a x^{2}}$
(b) $f(x)=N x^{2} \mathrm{e}^{-a x^{2}}$
(c) $f(x)= \begin{cases}N \sin \left(\frac{\pi x}{L}\right) & \text { if } 0 \leq x \leq L \\ 0 & \text { otherwise }\end{cases}$
(d) $f(x)= \begin{cases}N \cos \left(\frac{2 \pi x}{L}\right) & \text { if }-L / 2 \leq x \leq L / 2 \\ 0 & \text { otherwise }\end{cases}$

Here, a and L are constants.
4. Prove that the functions $\sin (x)$ and $\cos (x)$ are orthogonal on the interval $-\pi$ to π.

Some Potentially Useful Equations

Normalization:	$\int_{-\infty}^{\infty} f^{*}(x) f(x) \mathrm{d} x=1$
Orthogonality:	$\int_{-\infty}^{\infty} f^{*}(x) g(x) \mathrm{d} x=0$
Eigenvalue problem:	$\hat{O} f(x)=\lambda f(x)$

