Problem Set 3

Particle in a Box

1. Prove that $\Psi_{n}(x)$ is an eigenfunction of the Hamiltonian (\hat{H}). What are the eigenvalues?
2. What is the expectation value of the position of the particle in a box, $\langle\hat{x}\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
3. What is the expectation value of the square of the position of the particle in a box, $\left\langle\hat{x}^{2}\right\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
4. What is the expectation value of the momentum operator of the particle in a box, $\left\langle\hat{p}_{x}\right\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
5. What is the expectation value of the square of the momentum operator of the particle in a box, $\left\langle\hat{p}_{x}^{2}\right\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
6. What is the expectation value of the potential energy operator of the particle in a box, $\langle\hat{V}\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
7. What is the expectation value of the kinetic energy operator of the particle in a box, $\langle\hat{T}\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
8. What is the expectation value of the Hamiltonian operator (total energy operator) of the particle in a box, $\langle\hat{H}\rangle$, corresponding to the energy eigenfunction, $\Psi_{n}(x)$?
9. Prove that the particle in a box eigenfunctions are orthonormal, meaning:

$$
\int_{-\infty}^{\infty} \Psi_{m}^{*}(x) \Psi_{n}(x) \mathrm{d} x=\delta_{m n},
$$

where $\delta_{m n}$ is the Kronecker delta.
10. Graph the lowest few particle in a box wavefunctions, $\Psi_{n}(x)$, as a function of x.
11. Graph the square of lowest few particle in a box wavefunctions, $\left|\Psi_{n}(x)\right|^{2}$, as a function of x.

Energy eigenfunctions:

Energy eigenvalues:

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}, n=1,2,3, \ldots
$$

Expectation value:

$$
\langle\hat{A}\rangle=\frac{\int_{-\infty}^{\infty} \Psi^{*}(x) \hat{A} \Psi(x) \mathrm{d} x}{\int_{-\infty}^{\infty} \Psi^{*}(x) \Psi(x) \mathrm{d} x}
$$

Position operator:

$$
\hat{x}=x
$$

Momentum operator:

$$
\hat{p}_{x}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

Kinetic energy operator:

$$
\hat{T}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

Potential energy operator:

$$
\hat{V}=V(x)= \begin{cases}0 & \text { if } 0 \leq x \leq L \\ \infty & \text { otherwise }\end{cases}
$$

Hamiltonian operator:

$$
\hat{H}=\hat{T}+\hat{V}
$$

Kronecker delta:

$$
\delta_{m n}= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

$$
\Psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right), n=1,2,3, \ldots & \text { if } 0 \leq x \leq L \\ 0 & \text { otherwise }\end{cases}
$$

