Problem Set 3

Particle in a Box

- 1. Prove that $\Psi_n(x)$ is an eigenfunction of the Hamiltonian (\hat{H}) . What are the eigenvalues?
- 2. What is the expectation value of the position of the particle in a box, $\langle \hat{x} \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 3. What is the expectation value of the square of the position of the particle in a box, $\langle \hat{x}^2 \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 4. What is the expectation value of the momentum operator of the particle in a box, $\langle \hat{p}_x \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 5. What is the expectation value of the square of the momentum operator of the particle in a box, $\langle \hat{p}_x^2 \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 6. What is the expectation value of the potential energy operator of the particle in a box, $\langle V \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 7. What is the expectation value of the kinetic energy operator of the particle in a box, $\langle T \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 8. What is the expectation value of the Hamiltonian operator (total energy operator) of the particle in a box, $\langle \hat{H} \rangle$, corresponding to the energy eigenfunction, $\Psi_n(x)$?
- 9. Prove that the particle in a box eigenfunctions are orthonormal, meaning:

$$\int_{-\infty}^{\infty} \Psi_m^*(x) \Psi_n(x) \mathrm{d}x = \delta_{mn},$$

where δ_{mn} is the Kronecker delta.

- 10. Graph the lowest few particle in a box wavefunctions, $\Psi_n(x)$, as a function of x.
- 11. Graph the square of lowest few particle in a box wavefunctions, $|\Psi_n(x)|^2$, as a function of x.

Some	Poten	tially	Useful	Eq	uations
		• /			

Energy eigenfunctions:	$\Psi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \ n = 1, 2, 3, \dots \\ 0 \end{cases}$	$\begin{array}{l} \text{if } 0 \leq x \leq L \\ \text{otherwise} \end{array}$		
Energy eigenvalues:	$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, \ n = 1, 2, 3, \dots$			
Expectation value:	$\langle \hat{A} angle = rac{\int_{-\infty}^{\infty} \Psi^*(x) \hat{A} \Psi(x) \mathrm{d}x}{\int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) \mathrm{d}x}$			
Position operator:	$\hat{x} = x$			
Momentum operator:	$\hat{p}_x = -i\hbar rac{\mathrm{d}}{\mathrm{d}x}$			
Kinetic energy operator:	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$			
Potential energy operator:	$\hat{V} = V(x) = \begin{cases} 0 & \text{if } 0 \le x \le L \\ \infty & \text{otherwise} \end{cases}$			
Hamiltonian operator:	$\hat{H} = \hat{T} + \hat{V}$			
Kronecker delta:	$\delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$			