Problem Set 4

Operators and Dirac Notation

1. Determine the matrix elements of the identity operator in a basis of particle in a box energy eigenfunctions. $I_{i j}=\left\langle\Psi_{i}\right| \hat{I}\left|\Psi_{j}\right\rangle$
2. Determine the matrix elements of the position operator in a basis of particle in a box energy eigenfunctions. $X_{i j}=\left\langle\Psi_{i}\right| \hat{x}\left|\Psi_{j}\right\rangle$
3. Determine the matrix elements of the square of the position operator in a basis of particle in a box energy eigenfunctions. $Y_{i j}=\left\langle\Psi_{i}\right| \hat{x}^{2}\left|\Psi_{j}\right\rangle$
4. Determine the matrix elements of the momentum operator in a basis of particle in a box energy eigenfunctions. $P_{i j}=\left\langle\Psi_{i}\right| \hat{p}_{x}\left|\Psi_{j}\right\rangle$
5. Determine the matrix elements of the square of the momentum operator in a basis of particle in a box energy eigenfunctions. $Q_{i j}=\left\langle\Psi_{i}\right| \hat{p}_{x}^{2}\left|\Psi_{j}\right\rangle$
6. Determine the matrix elements of the kinetic energy operator in a basis of particle in a box energy eigenfunctions. $T_{i j}=\left\langle\Psi_{i}\right| \hat{T}\left|\Psi_{j}\right\rangle$
7. Determine the matrix elements of the Hamiltonian (total energy) operator in a basis of particle in a box energy eigenfunctions. $H_{i j}=\left\langle\Psi_{i}\right| \hat{H}\left|\Psi_{j}\right\rangle$
8. Determine the commutator of the position and momentum operators. $\left[\hat{x}, \hat{p}_{x}\right]=$?
9. Determine the commutator of the square of the position and momentum operators. $\left[\hat{x}^{2}, \hat{p}_{x}\right]=$?
10. Determine the commutator of the position and square of the momentum operators. $\left[\hat{x}, \hat{p}_{x}^{2}\right]=$?
11. Determine the commutator of the square of the position and square of the momentum operators. $\left[\hat{x}^{2}, \hat{p}_{x}^{2}\right]=$?
12. Determine the commutator of the position and kinetic energy operators. $[\hat{x}, \hat{T}]=$?
13. Determine the commutator of the momentum and kinetic energy operators. $\left[\hat{p}_{x}, \hat{T}\right]=$?
14. Show that, $\Delta \hat{x} \Delta \hat{p}_{x} \geq \frac{\hbar}{2}$, in general, using the commutator of position and momentum.
15. Show that, $\Delta \hat{x} \Delta \hat{p}_{x} \geq \frac{\hbar}{2}$, for a particle in a box energy eigenfunction using the RMSD of the position and momentum operators.

For each of the superposition states,

$$
\begin{gathered}
\Phi_{1}(x)=N_{1}\left(\Psi_{1}(x)+\Psi_{2}(x)\right) \\
\Phi_{2}(x)=N_{2}\left(3 \Psi_{1}(x)-\Psi_{2}(x)\right) \\
\Phi_{3}(x)=N_{3}\left(2 \Psi_{1}(x)+\sqrt{2} \Psi_{2}(x)+\sqrt{3} \Psi_{3}(x)\right) \\
\Phi_{4}(x)=N_{4}\left(\Psi_{1}(x)+0.7 \Psi_{2}(x)+0.4 \Psi_{3}(x)\right) \\
\Phi_{5}(x)=N_{5}\left(3 \Psi_{1}(x)+\Psi_{2}(x)+2 \Psi_{3}(x)+\sqrt{2} \Psi_{4}(x)\right)
\end{gathered}
$$

do the following.

1. Normalize the superposition state wavefunction, $\Phi(x)$.
2. Calculate the expectation value of the position operator, $\langle\hat{x}\rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
3. Calculate the expectation value of the square of the position operator, $\left\langle\hat{x}^{2}\right\rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
4. Calculate the expectation value of the momentum operator, $\left\langle\hat{p}_{x}\right\rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
5. Calculate the expectation value of the square of the momentum operator, $\left\langle\hat{p}_{x}^{2}\right\rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
6. Calculate the expectation value of the Hamiltonian (total energy) operator, $\langle\hat{H}\rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
7. Graph the superposition state wavefunction, $\Phi(x)$, as a function of x.
8. Graph the square of the superposition state wavefunction, $|\Phi(x)|^{2}$, as a function of x.

Energy eigenfunctions:

Energy eigenvalues:
Expectation value:
Position operator:
Momentum operator:
Kinetic energy operator:
Potential energy operator:

Hamiltonian operator:

Kronecker delta:

Ket:
Bra:
Bra-ket:
Matrix form of an operator
Resolution of the identity
Commutator:
Root-mean-square deviation:
Heisenberg uncertainty principle $\quad \Delta A \Delta B \geq \frac{1}{2}|\langle[\hat{A}, \hat{B}]\rangle|$
$E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}, n=1,2,3, \ldots$
$\langle\hat{A}\rangle=\frac{\int_{-\infty}^{\infty} \Psi^{*}(x) \hat{A} \Psi(x) \mathrm{d} x}{\int_{-\infty}^{\infty} \Psi^{*}(x) \Psi(x) \mathrm{d} x}$
$\hat{x}=x$
$\hat{p}_{x}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}$
$\hat{T}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}$
$\hat{H}=\hat{T}+\hat{V}$
$\delta_{m n}= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}$
$|n\rangle=\Psi_{n}(x)$
$\langle n|=\Psi_{n}^{*}(x)$
$\langle m| \hat{A}|n\rangle=\int_{-\infty}^{\infty} \Psi_{m}^{*}(x) \hat{A} \Psi_{n}(x) \mathrm{d} x$
$\hat{I}=\sum_{n=1}^{\infty}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|$
$[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$
$\Delta \hat{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$
$\Psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right), n=1,2,3, \ldots & \text { if } 0 \leq x \leq L \\ 0 & \text { otherwise }\end{cases}$
$\hat{V}=V(x)= \begin{cases}0 & \text { if } 0 \leq x \leq L \\ \infty & \text { otherwise }\end{cases}$
$A_{m n}=\left\langle\Psi_{m}\right| \hat{A}\left|\Psi_{n}\right\rangle=\int_{-\infty}^{\infty} \Psi_{m}^{*}(x) \hat{A} \Psi_{n}(x) \mathrm{d} x$

