Problem Set 4

Operators and Dirac Notation

- 1. Determine the matrix elements of the identity operator in a basis of particle in a box energy eigenfunctions. $I_{ij} = \langle \Psi_i | \hat{I} | \Psi_j \rangle$
- 2. Determine the matrix elements of the position operator in a basis of particle in a box energy eigenfunctions. $X_{ij} = \langle \Psi_i | \hat{x} | \Psi_j \rangle$
- 3. Determine the matrix elements of the square of the position operator in a basis of particle in a box energy eigenfunctions. $Y_{ij} = \langle \Psi_i | \hat{x}^2 | \Psi_j \rangle$
- 4. Determine the matrix elements of the momentum operator in a basis of particle in a box energy eigenfunctions. $P_{ij} = \langle \Psi_i | \hat{p}_x | \Psi_j \rangle$
- 5. Determine the matrix elements of the square of the momentum operator in a basis of particle in a box energy eigenfunctions. $Q_{ij} = \langle \Psi_i | \hat{p}_x^2 | \Psi_j \rangle$
- 6. Determine the matrix elements of the kinetic energy operator in a basis of particle in a box energy eigenfunctions. $T_{ij} = \langle \Psi_i | \hat{T} | \Psi_j \rangle$
- 7. Determine the matrix elements of the Hamiltonian (total energy) operator in a basis of particle in a box energy eigenfunctions. $H_{ij} = \langle \Psi_i | \hat{H} | \Psi_j \rangle$
- 8. Determine the commutator of the position and momentum operators. $[\hat{x}, \hat{p}_x] = ?$
- 9. Determine the commutator of the square of the position and momentum operators. $[\hat{x}^2, \hat{p}_x] = ?$
- 10. Determine the commutator of the position and square of the momentum operators. $[\hat{x}, \hat{p}_x^2] = ?$
- 11. Determine the commutator of the square of the position and square of the momentum operators. $[\hat{x}^2, \hat{p}_x^2] = ?$
- 12. Determine the commutator of the position and kinetic energy operators. $[\hat{x}, \hat{T}] = ?$
- 13. Determine the commutator of the momentum and kinetic energy operators. $[\hat{p}_x, \hat{T}] = ?$
- 14. Show that, $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$, in general, using the commutator of position and momentum.
- 15. Show that, $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$, for a particle in a box energy eigenfunction using the RMSD of the position and momentum operators.

For each of the superposition states,

$$\Phi_1(x) = N_1 \left(\Psi_1(x) + \Psi_2(x) \right)$$

$$\Phi_2(x) = N_2 \left(3\Psi_1(x) - \Psi_2(x) \right)$$

$$\Phi_3(x) = N_3 \left(2\Psi_1(x) + \sqrt{2}\Psi_2(x) + \sqrt{3}\Psi_3(x) \right)$$

$$\Phi_4(x) = N_4 \left(\Psi_1(x) + 0.7\Psi_2(x) + 0.4\Psi_3(x) \right)$$

$$\Phi_5(x) = N_5 \left(3\Psi_1(x) + \Psi_2(x) + 2\Psi_3(x) + \sqrt{2}\Psi_4(x) \right)$$

do the following.

- 1. Normalize the superposition state wavefunction, $\Phi(x)$.
- 2. Calculate the expectation value of the position operator, $\langle \hat{x} \rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
- 3. Calculate the expectation value of the square of the position operator, $\langle \hat{x}^2 \rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
- 4. Calculate the expectation value of the momentum operator, $\langle \hat{p}_x \rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
- 5. Calculate the expectation value of the square of the momentum operator, $\langle \hat{p}_x^2 \rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
- 6. Calculate the expectation value of the Hamiltonian (total energy) operator, $\langle \hat{H} \rangle$, corresponding to the following particle in a box superposition state, $\Phi(x)$,
- 7. Graph the superposition state wavefunction, $\Phi(x)$, as a function of x.
- 8. Graph the square of the superposition state wavefunction, $|\Phi(x)|^2$, as a function of x.

Some	Poten	tially	Useful	Eq	uations
		• /			

Energy eigenfunctions:	$\Psi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \ n = 1, 2, 3, \dots & \text{if } 0 \le x \le L \\ 0 & \text{otherwise} \end{cases}$			
Energy eigenvalues:	$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, \ n = 1, 2, 3, \dots$			
Expectation value:	$\langle \hat{A} angle = rac{\int_{-\infty}^{\infty} \Psi^*(x) \hat{A} \Psi(x) \mathrm{d}x}{\int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) \mathrm{d}x}$			
Position operator:	$\hat{x} = x$			
Momentum operator:	$\hat{p}_x = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}$			
Kinetic energy operator:	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$			
Potential energy operator:	$\hat{V} = V(x) = \begin{cases} 0 & \text{if } 0 \le x \le L \\ \infty & \text{otherwise} \end{cases}$			
Hamiltonian operator:	$\hat{H} = \hat{T} + \hat{V}$			
Kronecker delta:	$\delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$			
Ket:	$ n angle=\Psi_n(x)$			
Bra:	$\langle n =\Psi_n^*(x)$			
Bra-ket:	$\langle m \hat{A} n angle = \int_{-\infty}^{\infty} \Psi_m^*(x)\hat{A}\Psi_n(x)\mathrm{d}x$			
Matrix form of an operator	$A_{mn} = \langle \Psi_m \hat{A} \Psi_n \rangle = \int_{-\infty}^{\infty} \Psi_m^*(x) \hat{A} \Psi_n(x) dx$			
Resolution of the identity	$\hat{I} = \sum_{n=1}^{\infty} \Psi_n angle \langle \Psi_n $			
Commutator:	$[\hat{A},\hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$			
Root-mean-square deviation:	$\Delta \hat{A} = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$			
Heisenberg uncertainty principle	$\Delta A \Delta B \geq \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $			