Problem Set 5

Time Dependence in Quantum Mechanics

- 1. For a particle in a box energy eigenfunction, $\psi_n(x)$, do the following.
 - (a) Write the time-dependent wavefunction at some arbitrary time, t, in terms of the timeindependent energy eigenstate, $\psi_n(x)$.
 - (b) What is the expectation value of the total energy operator, \hat{H} , for $\Psi_n(x,t)$ at some time t?
 - (c) What is the expectation value of the position operator, \hat{x} , for $\Psi_n(x,t)$ at some time t?
- 2. For each of the superposition states,

$$\phi_1(x) = N_1 (\psi_1(x) + \psi_2(x))$$

$$\phi_2(x) = N_2 (3\psi_1(x) - \psi_2(x))$$

$$\phi_3(x) = N_3 (2\psi_1(x) + \sqrt{2}\psi_2(x) + \sqrt{3}\psi_3(x))$$

$$\phi_4(x) = N_4 (\psi_1(x) + 0.7\psi_2(x) + 0.4\psi_3(x))$$

$$\phi_5(x) = N_5 (3\psi_1(x) + \psi_2(x) + 2\psi_3(x) + \sqrt{2}\psi_4(x))$$

do the following.

- (a) Write the time-dependent wavefunction, $\Phi(x, t)$ at some arbitrary time t, in terms of the time-independent energy eigenstates, $\psi_n(x)$.
- (b) Normalize the wavefunction at all times t.
- (c) What is the expectation value of the total energy operator, \hat{H} , for $\Phi(x, t)$ at some time t?
- (d) What is the expectation value of the position operator, \hat{x} , for $\Phi(x,t)$ at some time t?
- (e) What is the expectation value of the square of the position operator, \hat{x}^2 , for $\Phi(x, t)$ at some time t?
- (f) What is the expectation value of the momentum operator, \hat{p}_x , for $\Phi(x,t)$ at some time t?
- (g) What is the expectation value of the square of the momentum operator, \hat{p}_x^2 , for $\Phi(x,t)$ at some time t?

Some	Potentially	Useful	Equations

Energy eigenfunctions:	$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), & n = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases} \text{ if } 0 \le x \le L \\ 0 & \text{otherwise} \end{cases}$		
Energy eigenvalues:	$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, \ n = 1, 2, 3, \dots$		
Time-dependence:	$\Psi_n(x,t) = \psi_n(x) \mathrm{e}^{-iE_n t/\hbar}$		
Expectation value:	$\langle \hat{A} angle = rac{\int_{-\infty}^{\infty} \Psi^*(x) \hat{A} \Psi(x) \mathrm{d}x}{\int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) \mathrm{d}x}$		
Position operator:	$\hat{x} = x$		
Momentum operator:	$\hat{p}_x = -i\hbar rac{\mathrm{d}}{\mathrm{d}x}$		
Kinetic energy operator:	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$		
Potential energy operator:	$\hat{V} = V(x) = \begin{cases} 0 & \text{if } 0 \le x \le L \\ \infty & \text{otherwise} \end{cases}$		
Hamiltonian operator:	$\hat{H} = \hat{T} + \hat{V}$		
Kronecker delta:	$\delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$		
Ket:	$ n\rangle = \Psi_n(x)$		
Bra:	$\langle n = \Psi_n^*(x)$		
Bra-ket:	$\langle m \hat{A} n angle = \int_{-\infty}^{\infty} \Psi_m^*(x)\hat{A}\Psi_n(x)\mathrm{d}x$		
Matrix form of an operator	$A_{mn} = \langle \Psi_m \hat{A} \Psi_n \rangle = \int_{-\infty}^{\infty} \Psi_m^*(x) \hat{A} \Psi_n(x) dx$		
Resolution of the identity	$\hat{I} = \sum_{n=1}^{\infty} \Psi_n angle \langle \Psi_n $		
Commutator:	$[\hat{A},\hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$		
Root-mean-square deviation:	$\Delta \hat{A} = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$		
Heisenberg uncertainty principle	$\Delta A \Delta B \geq \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $		