Problem Set 7

Harmonic Oscillator

1. For the quantum harmonic oscillator, prove that $\psi_{n}(x)$ is an eigenfunction of the Hamiltonian for the lowest few quantum numbers $(n=0,1,2, \ldots)$. What is the corresponding eigenvalue?
2. Show that, $\Delta \hat{x} \Delta \hat{p}_{x} \geq \frac{\hbar}{2}$, using the general uncertainty relation, $\Delta \hat{A} \Delta \hat{B} \geq \frac{1}{2}|\langle[\hat{A}, \hat{B}]\rangle|$, for the ground state harmonic oscillator wavefunction, $\psi_{0}(x)$.
3. Show that the lowest few harmonic oscillator energy eigenfunctions are orthonormal.
4. Determine the matrix elements of the position operator in a basis of the lowest few harmonic oscillator wavefunctions. $X_{i j}=\left\langle\psi_{i}\right| \hat{x}\left|\psi_{j}\right\rangle$
5. Determine the matrix elements of the square of the position operator in a basis of the lowest few harmonic oscillator wavefunctions. $Y_{i j}=\left\langle\psi_{i}\right| \hat{x}^{2}\left|\psi_{j}\right\rangle$
6. Determine the matrix elements of the momentum operator in a basis of the lowest few harmonic oscillator wavefunctions. $P_{i j}=\left\langle\psi_{i}\right| \hat{p}_{x}\left|\psi_{j}\right\rangle$
7. Determine the matrix elements of the square of the momentum operator in a basis of the lowest few harmonic oscillator wavefunctions. $Q_{i j}=\left\langle\psi_{i}\right| \hat{p}_{x}^{2}\left|\psi_{j}\right\rangle$
8. Determine the matrix elements of the Hamiltonian (total energy) operator in a basis of the lowest few harmonic oscillator wavefunctions. $H_{i j}=\left\langle\psi_{i}\right| \hat{H}\left|\psi_{j}\right\rangle$

Some Potentially Useful Equations

Energy eigenfunctions:

$$
\begin{aligned}
& \psi_{n}=A_{n} H_{n}\left(a^{1 / 2} x\right) \mathrm{e}^{-a x^{2} / 2}, \quad n=0,1,2 \ldots \\
& a=\sqrt{\frac{k m}{\hbar^{2}}} \quad A_{n}=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{a}{\pi}\right)^{1 / 4}
\end{aligned}
$$

Energy eigenvalues:

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \sqrt{\frac{k}{m}}
$$

Expectation value:

$$
\langle\hat{A}\rangle=\frac{\int_{-\infty}^{\infty} \psi^{*}(x) \hat{A} \psi(x) \mathrm{d} x}{\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) \mathrm{d} x}
$$

Position operator:
$\hat{x}=x$
Momentum operator: $\hat{p}_{x}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}$

Kinetic energy operator: $\hat{T}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}$

Potential energy operator: $\hat{V}=V(x)=\frac{1}{2} k x^{2}$

Hamiltonian operator: $\hat{H}=\hat{T}+\hat{V}$

Matrix form of an operator
$A_{m n}=\left\langle\Psi_{m}\right| \hat{A}\left|\Psi_{n}\right\rangle=\int_{-\infty}^{\infty} \Psi_{m}^{*}(x) \hat{A} \Psi_{n}(x) \mathrm{d} x$
Commutator:
$[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$
Root-mean-square deviation: $\Delta \hat{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$

Heisenberg uncertainty principle $\Delta A \Delta B \geq \frac{1}{2}|\langle[\hat{A}, \hat{B}]\rangle|$

Hermite polynomials

$H_{0}(z)=1$
$H_{1}(z)=2 z$
$H_{2}(z)=4 z^{2}-2$
$H_{3}(z)=8 z^{3}-12 z$
$H_{4}(z)=16 z^{4}-48 z^{2}+12$
$H_{5}(z)=32 z^{5}-160 z^{3}+120 z$

