Problem Set 7

Harmonic Oscillator

- 1. For the quantum harmonic oscillator, prove that $\psi_n(x)$ is an eigenfunction of the Hamiltonian for the lowest few quantum numbers (n = 0, 1, 2, ...). What is the corresponding eigenvalue?
- 2. Show that, $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$, using the general uncertainty relation, $\Delta \hat{A} \Delta \hat{B} \geq \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|$, for the ground state harmonic oscillator wavefunction, $\psi_0(x)$.
- 3. Show that the lowest few harmonic oscillator energy eigenfunctions are orthonormal.
- 4. Determine the matrix elements of the position operator in a basis of the lowest few harmonic oscillator wavefunctions. $X_{ij} = \langle \psi_i | \hat{x} | \psi_j \rangle$
- 5. Determine the matrix elements of the square of the position operator in a basis of the lowest few harmonic oscillator wavefunctions. $Y_{ij} = \langle \psi_i | \hat{x}^2 | \psi_j \rangle$
- 6. Determine the matrix elements of the momentum operator in a basis of the lowest few harmonic oscillator wavefunctions. $P_{ij} = \langle \psi_i | \hat{p}_x | \psi_j \rangle$
- 7. Determine the matrix elements of the square of the momentum operator in a basis of the lowest few harmonic oscillator wavefunctions. $Q_{ij} = \langle \psi_i | \hat{p}_x^2 | \psi_j \rangle$
- 8. Determine the matrix elements of the Hamiltonian (total energy) operator in a basis of the lowest few harmonic oscillator wavefunctions. $H_{ij} = \langle \psi_i | \hat{H} | \psi_j \rangle$

Energy eigenfunctions:	$\psi_n = A_n H_n(a^{1/2}x) e^{-ax^2/2}, \ n = 0, 1, 2$
	$a = \sqrt{\frac{km}{\hbar^2}}$ $A_n = \frac{1}{\sqrt{2^n n!}} \left(\frac{a}{\pi}\right)^{1/4}$
Energy eigenvalues:	$E_n = (n + \frac{1}{2})\hbar\sqrt{\frac{k}{m}}$
Expectation value:	$\langle \hat{A} angle = rac{\int_{-\infty}^{\infty} \psi^*(x) \hat{A} \psi(x) \mathrm{d}x}{\int_{-\infty}^{\infty} \psi^*(x) \psi(x) \mathrm{d}x}$
Position operator:	$\hat{x} = x$
Momentum operator:	$\hat{p}_x = -i\hbar rac{\mathrm{d}}{\mathrm{d}x}$
Kinetic energy operator:	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$
Potential energy operator:	$\hat{V} = V(x) = \frac{1}{2}kx^2$
Hamiltonian operator:	$\hat{H} = \hat{T} + \hat{V}$
Matrix form of an operator	$A_{mn} = \langle \Psi_m \hat{A} \Psi_n \rangle = \int_{-\infty}^{\infty} \Psi_m^*(x) \hat{A} \Psi_n(x) dx$
Commutator:	$[\hat{A},\hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$
Root-mean-square deviation:	$\Delta \hat{A} = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$
Heisenberg uncertainty principle	$\Delta A \Delta B \geq \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $

Some Potentially Useful Equations

Hermite polynomials

 $H_0(z) = 1$ $H_1(z) = 2z$ $H_2(z) = 4z^2 - 2$ $H_3(z) = 8z^3 - 12z$ $H_4(z) = 16z^4 - 48z^2 + 12$ $H_5(z) = 32z^5 - 160z^3 + 120z$