Problem Set 10

Rovibrational Spectroscopy

For each of the diatomic molecules listed below, do the following:

- 1. For each molecule, determine the energies of rotational transitions.
- 2. For each molecule, estimate the intensity of each transition using Boltzmann populations and the degeneracy of the transition.
- 3. For each molecule, make a plot of the rotational spectrum.

Molecule	$B_e \ (\mathrm{cm}^{-1})$
F_2	0.89019
Cl_2	0.24399
Br_2	0.082107
I ₂	0.037372
HF	20.956
HCl	10.593
HBr	8.4649
HI	6.4264

For each of the diatomic hydrides listed below, do the following:

- 1. For each hydride, determine the energies of the rovibrational transitions.
- 2. For each hydride, estimate the intensity of each transition using Boltzmann populations and the degeneracy of the transition.
- 3. For each hydride, make a plot of the rovibrational spectrum.
- 4. Repeat these calculations to predict the effect of isotopic substitution of deuterium.

Molecule	$\omega_e \ ({\rm cm}^{-1})$	$B_e \ (\mathrm{cm}^{-1})$
LiH	1405.65	7.513
BeH	2060.78	10.314
BH	2366.90	12.021
СН	2858.50	14.457
NH	3282.27	16.699
OH	3737.76	18.911
HF	4138.32	20.956

Some Potentially Useful Equations

Harmonic Oscillator

 $E_n = (n + \frac{1}{2})\hbar\sqrt{\frac{k}{\mu}} = (n + \frac{1}{2})h\nu$ $\frac{E_n}{hc} = (n + \frac{1}{2})\omega_e$ Vibrational Energy Levels Vibrational Energy Levels (in $\rm cm^{-1}$) $\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$ $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$ Vibrational Frequency Reduced Mass

Rigid Rotor

Rotational Energy Levels	$E_{J,M_J} = J(J+1)\frac{\hbar^2}{2\mu R^2} = J(J+1)\frac{\hbar^2}{2I}$
Rotational Energy Levels (in $\rm cm^{-1}$)	$\frac{E_{J,M_J}}{hc} = J(J+1)B_e$
Moment of Inertia	$I = \mu R^2$

Boltzmann Factors

Partition Function

Probabilities

Partition Function
$$Q = \sum_{i}^{\infty} e^{-E_i/k_{\rm B}T}$$
Probabilities $p_i = \frac{e^{-E_i/k_{\rm B}T}}{\sum_{j}^{\infty} e^{-E_j/k_{\rm B}T}}$ Partition Function (including degeneracy) $Q = \sum_{i}^{\infty} g_i e^{-E_i/k_{\rm B}T}$ Probabilities (including degeneracy) $p_i = \frac{g_i e^{-E_i/k_{\rm B}T}}{\sum_{j}^{\infty} g_j e^{-E_j/k_{\rm B}T}}$ Vibrational Partion Function $Q_{\rm vib} = \frac{e^{-h\nu/2k_{\rm B}T}}{1 - e^{-h\nu/k_{\rm B}T}}$ (with zero-point energy) $Q_{\rm vib} = \frac{1}{1 - e^{-h\nu/k_{\rm B}T}}$

$$Q_{\rm vib} = \frac{1}{1 - e^{-h\nu/k_{\rm B}T}}$$

Vibrational Partion Function (without zero-point energy)

Vibrational Partion Function

(with zero-point energy)