Problem Set 12

Spin Operators and Spin Functions

- 1. Evaluate all pairs of commutators between: \hat{S}_x , \hat{S}_y , \hat{S}_z , \hat{S}_+ , \hat{S}_- , and \hat{S}^2 .
- 2. Evaluate the action of \hat{S}^2 on all possible products of $|\alpha\rangle$ and $|\beta\rangle$ spin functions (for one, two and three electron functions).
- 3. Construct all unique eigenfunctions of the total spin operator, \hat{S}^2 , as linear combinations of products of the $|\alpha\rangle$ and $|\beta\rangle$ spin functions (for one, two and three electron functions).
- 4. Construct matrix representations of the spin operators in a basis of products of spin functions (for one, two and three electron functions).
- 5. Using a matrix representation of the spin functions and spin operators, repeat part 3.
- 6. Construct matrix representations of the spin operators in the basis of eigenfunctions of the total spin operator obtained in part 5.
- 7. Check the commutation relations obtained in part 1 with the commutators of the of the matrix representation of the operators obtained in part 4 (for one, two and three electron functions).
- 8. For extra practice, repeat parts 2 through 7 for cases with four or more electrons.

Some Potentially Useful Equations

$\langle \alpha \alpha \rangle = \langle \beta \beta \rangle = 1$	$\langle \alpha \beta \rangle = \langle \beta \alpha \rangle = 0$
$\hat{S}_x \alpha \rangle = \frac{\hbar}{2} \beta \rangle$	$\hat{S}_x eta angle=rac{\hbar}{2} lpha angle$
$\hat{S}_{y} lpha angle=rac{i\hbar}{2} eta angle$	$\hat{S}_{y} eta angle = -rac{i\hbar}{2} lpha angle$
$\hat{S}_{z} lpha angle=rac{\hbar}{2} lpha angle$	$\hat{S}_z eta angle=-rac{\hbar}{2} eta angle$
$\hat{S}_{+} = \hat{S}_{x} + i\hat{S}_{y}$	$\hat{S}_{-} = \hat{S}_{x} - i\hat{S}_{y}$
$\hat{S}_{+} \alpha\rangle = 0$	$\hat{S}_{+} \beta angle=\hbar \alpha angle$
$\hat{S}_{-} \alpha\rangle = \hbar \beta\rangle$	$\hat{S}_{-} eta angle=0$
$[\hat{S}_x,\hat{S}_y]=i\hbar\hat{S}_z$	$[\hat{S}_y,\hat{S}_z]=i\hbar\hat{S}_x$
$[\hat{S}_z, \hat{S}_x] = i\hbar \hat{S}_y$	

 $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2 = \hat{S}_+ \hat{S}_- - \hbar \hat{S}_z + \hat{S}_z^2 = \hat{S}_- \hat{S}_+ + \hbar \hat{S}_z + \hat{S}_z^2$